Допустим, Земле конец. Солнце готово вот-вот взорваться, к планете приближается астероид размером с Техас. Крупные города населены зомби, а в сельской местности фермеры усиленно сажают кукурузу, потому что другие посевы гибнут. Нужно срочно покидать планету, но вот беда — в районе Сатурна никаких червоточин не обнаружено, а сверхсветовых двигателей из далёкой-далёкой галактики не завезли. До ближайшей звезды — больше четырёх световых лет. Сможет ли человечество достичь её, располагая современными технологиями? Ответ не столь очевиден.

Вряд ли кто-то станет утверждать, что глобальная экологическая катастрофа, которая поставит под угрозу существование всей жизни на Земле, может случиться лишь в кино. На нашей планете не раз происходили массовые вымирания, во время которых гибло до 90% существующих видов. Земля переживала периоды глобального оледенения, сталкивалась с астероидами, проходила через всплески вулканической активности.

Конечно, даже во время самых страшных катастроф жизнь никогда не исчезала полностью. Но того же не скажешь о господствовавших на тот момент видах, которые вымирали, освобождая дорогу другим. А кто сейчас господствующий вид? Вот-вот.

Вполне вероятно, что возможность покинуть родной дом и отправиться к звёздам в поисках нового сможет когда-нибудь спасти человечество. Однако вряд ли стоит уповать, что какие-нибудь космические благодетели откроют нам дорогу к звёздам. Стоит прикинуть, каковы наши теоретические возможности добраться до звёзд своими силами.

Космический ковчег

В первую очередь на ум приходят традиционные двигатели на химической тяге. В настоящий момент четырём земным аппаратам (все они были запущены ещё в 1970-х) удалось развить третью космическую скорость, достаточную для того, чтобы навсегда покинуть Солнечную систему.

Наиболее быстрый из них, «Вояджер-1», за прошедшие с момента запуска 37 лет удалился от Земли на расстояние в 130 а.е. (астрономических единиц, то есть 130 расстояний от Земли до Солнца). Каждый год аппарат преодолевает примерно 3,5 а.е. Расстояние до Альфы Центавра — 4,36 световых лет, или 275 725 а.е. С такой скоростью аппарату потребуется почти 79 тысяч лет, чтобы добраться до соседней звезды. Мягко говоря, ждать придётся долго.

Фото Земли (над стрелочкой) с расстояния 6 миллиардов километров, сделанное «Вояджером-1». Это расстояние космический аппарат прошёл за 13 лет.

Можно найти способ лететь быстрее, а можно просто смириться и лететь несколько тысяч лет. Тогда конечной точки достигнут лишь далёкие потомки тех, кто отправился в путешествие. Именно в этом заключается идея так называемого корабля поколений — космического ковчега, представляющего собой рассчитанную на длительное путешествие замкнутую экосистему.

В фантастике есть множество различных сюжетов о кораблях поколений. О них писали Гарри Гаррисон («Пленённая Вселенная»), Клиффорд Саймак («Поколение, достигшее цели»), Брайан Олдисс («Без остановки»), из более современных писателей — Бернард Вербер («Звёздная бабочка»). Довольно часто далёкие потомки первых обитателей вообще забывают о том, откуда они вылетели и в чём цель их путешествия. Или даже начинают считать, что весь существующий мир сводится к кораблю, как, например, рассказывается в романе Роберта Хайнлайна «Пасынки Вселенной». Другой интересный сюжет показан в восьмом эпизоде третьего сезона классического «Звёздного пути», где экипаж «Энтерпрайза» пытается предотвратить столкновение корабля поколений, чьи обитатели забыли о своей миссии, и обитаемой планеты, к которой он направлялся.

Плюс корабля поколений заключается в том, что этот вариант не потребует принципиально новых двигателей. Однако нужно будет разработать самодостаточную экосистему, которая сможет существовать без поставок извне в течение многих тысяч лет. И не стоит забывать о том, что люди могут попросту поубивать друг друга.

Проведённый в начале 1990-х под замкнутым куполом эксперимент «Биосфера-2» продемонстрировал ряд опасностей, которые могут подстерегать людей при таких путешествиях. Это и быстрое разделение коллектива на несколько группировок, враждебно настроенных друг к другу, и неконтролируемое размножение вредителей, которое вызвало недостаток кислорода в воздухе. Даже обычный ветер, как оказалось, играет важнейшую роль — без регулярного раскачивания деревья становятся хрупкими и ломаются.

«Мир под куполом» в проекте «Биосфера-2».

Решить многие проблемы длительного полёта поможет технология, погружающая людей в длительный анабиоз. Тогда ни конфликты не страшны, ни скука, да и система жизнеобеспечения потребуется минимальная. Главное — обеспечить её энергией на длительный срок. Например, с помощью ядерного реактора.

С темой корабля поколений связан весьма интересный парадокс под названием Wait Calculation («Расчётное ожидание»), описанный учёным Эндрю Кеннеди. Согласно этому парадоксу, в течение некоторого времени после отправки первого корабля поколений на Земле могут быть открыты новые, более быстрые способы передвижения, что позволит стартующим позже кораблям обогнать первоначальных поселенцев. Так что не исключено, что к моменту прибытия пункт назначения уже будет перенаселён далёкими потомками колонизаторов, которые отправились позднее.

Установки для анабиоза в фильме «Чужой».

Верхом на ядерной бомбе

Предположим, нас не устраивает, что до звёзд долетят потомки наших потомков, и мы хотим сами подставить лицо лучам чужого солнца. В этом случае не обойтись без космического корабля, способного разогнаться до скоростей, которые доставят его к соседней звезде за время меньше одной человеческой жизни. И тут поможет старая добрая ядерная бомба.

Идея подобного корабля появилась ещё в конце 1950-х. Космический аппарат предназначался для полётов внутри Солнечной системы, однако его вполне можно было бы использовать и для межзвёздных путешествий. Принцип его работы таков: за кормой устанавливают мощную бронированную плиту. Из космического аппарата в направлении, противоположном полёту, равномерно выбрасываются маломощные ядерные заряды, которые подрываются на небольшом (до 100 метров) расстоянии.

Заряды сконструированы таким образом, чтобы большая часть продуктов взрыва направлена в хвост космического корабля. Отражающая плита принимает на себя импульс и передаёт его кораблю через систему амортизаторов (без неё перегрузки будут губительны для экипажа). От повреждения световой вспышкой, потоками гамма-излучения и высокотемпературной плазмой отражающую плиту защищает покрытие из графитовой смазки, которое заново распыляется после каждого подрыва.

Проект NERVA — пример ядерного ракетного двигателя.

На первый взгляд подобная схема кажется безумной, но она вполне жизнеспособна. Во время одного из ядерных испытаний на атолле Эниветок в 9 метрах от центра взрыва были размещены покрытые графитом стальные сферы. После испытания они были найдены неповреждёнными, что доказывает эффективность графитовой защиты для корабля. Но подписанный в 1963 году «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой» поставил крест на этой идее.

Артур Кларк хотел оснастить космический корабль Discovery One из фильма «Космическая одиссея 2001 года» чем-то вроде ядерно-взрывного двигателя. Однако Стэнли Кубрик попросил его отказаться от идеи, испугавшись, что зрители сочтут это пародией на его фильм «Доктор Стрейнджлав, или Как я перестал бояться и полюбил атомную бомбу».

«Орион» разрабатывался во времена, когда всё человечество жило в ожидании атомной войны.

Схема направленного ядерного заряда, который мог бы использоваться в качестве топливного элемента для «Ориона».

Какую же скорость можно развить с помощью серии ядерных взрывов? Больше всего сведений существует о проекте взрыволёта «Орион», который разрабатывался в конце 1950-х в США при участии учёных Теодора Тейлора и Фримена Дайсона. 400 000-тонный корабль планировалось разогнать до 3,3% скорости света — тогда полёт до системы Альфы Центавра продлился бы 133 года. Однако, согласно нынешним оценкам, подобным способом можно разогнать корабль до 10% скорости света. В таком случае полёт продлится примерно 45 лет, что позволит экипажу дожить до прибытия в пункт назначения.

Конечно, постройка такого корабля — весьма недешёвое дело. По оценке Дайсона, на создание «Ориона» потребовалось бы примерно 3 триллиона долларов в современных ценах. Но если мы узнаем, что нашей планете будет грозить глобальная катастрофа, то, вероятно, именно корабль с ядерно-импульсным двигателем станет последним шансом человечества на выживание.

Газовый гигант

Дальнейшим развитием идей «Ориона» стал проект беспилотного корабля «Дедал», который разрабатывался в 1970-х годах группой учёных из Британского межпланетного общества. Исследователи задались целью спроектировать беспилотный космический аппарат, способный в течение человеческой жизни достичь одной из ближайших звёзд, провести научные исследования и передать на Землю полученную информацию. Главным условием исследования было использование в проекте либо существующих, либо предвидимых в ближайшее время технологий.

Целью полёта была выбрана находящаяся от нас на расстоянии 5,91 светового года звезда Барнарда — в 1970-е годы считалось, что вокруг этой звезды вращается несколько планет. Сейчас мы знаем, что в данной системе нет планет. Разработчики «Дедала» нацелились на создание двигателя, который мог бы доставить корабль до пункта назначения за время, не превышающее 50 лет. В итоге они пришли к идее двухступенчатого аппарата.

«Орион» послужил прообразом для корабля из мини-сериала Ascension.

Необходимое ускорение обеспечивала серия маломощных ядерных взрывов, происходящих внутри специальной двигательной установки. В качестве топлива использовались микроскопические гранулы из смеси дейтерия с гелием-3, облучаемые потоком высокоэнергетических электронов. Согласно проекту, в двигателе должно было происходить до 250 взрывов в секунду. Соплом служило мощное магнитное поле, создаваемое силовыми установками корабля.

По плану первая ступень корабля работала в течение двух лет, разгоняя корабль до 7% скорости света. После этого «Дедал» сбрасывал отработанную двигательную установку, избавляясь от большей части своей массы, и запускал вторую ступень, которая позволяла ему разогнаться до окончательной скорости в 12,2% световой. Это позволило бы достичь звезды Барнарда через 49 лет после запуска. Ещё 6 лет ушло бы на передачу сигнала на Землю.

Полная масса «Дедала» составляла 54 тысячи тонн, из которых 50 тысяч приходилось на термоядерное горючее. Однако предполагаемый гелий-3 чрезвычайно редко встречается на Земле — зато его полно в атмосферах газовых гигантов. Поэтому авторы проекта предполагали добыть гелий-3 на Юпитере с помощью «плавающего» в его атмосфере автоматизированного завода; на весь процесс добычи ушло бы примерно 20 лет. На той же орбите Юпитера предполагалось осуществить окончательную сборку корабля, который бы затем стартовал к другой звёздной системе.

«Дедал» — концепт-арт Британского межпланетного общества

Самым сложным элементом во всей концепции «Дедала» была именно добыча гелия-3 из атмосферы Юпитера. Для этого нужно было долететь до Юпитера (что тоже не так-то легко и быстро), основать базу на одном из спутников, построить завод, где-то хранить топливо... И это уже не говоря о мощных радиационных поясах вокруг газового гиганта, которые дополнительно усложнили бы жизнь технике и инженерам.

Ещё одна проблема состояла в том, что «Дедал» не имел возможности погасить скорость и выйти на орбиту звезды Барнарда. Корабль и выпущенные им зонды просто бы прошли мимо звезды по пролётной траектории, преодолев всю систему за несколько дней.

Сейчас международная группа из двадцати учёных и инженеров, действующая под эгидой Британского межпланетного сообщества, работает над проектом корабля «Икар». «Икар» — своеобразный «римейк» Дедала, учитывающий накопленные за последние 30 лет знания и технологии. Одно из основных направлений работы — поиск других видов топлива, которое можно было бы добыть и на Земле.

«Икар» — концепт-арт.

Со скоростью света

Можно ли разогнать космический корабль до скорости света? Эту задачу можно решить несколькими способами. Наиболее перспективный из них — аннигиляционный двигатель на антиматерии. Принцип его действия заключается в следующем: антиматерия подаётся в рабочую камеру, где она входит в соприкосновение с обычным веществом, порождая управляемый взрыв. Ионы, возникшие в процессе взрыва, выбрасываются через сопло двигателя, создавая тягу. Из всех возможных двигателей аннигиляционный теоретически позволяет достичь наибольших скоростей. Взаимодействие материи и антиматерии высвобождает колоссальное количество энергии, а скорость истечения образующихся в ходе этого процесса частиц близка к световой.

Но тут встаёт вопрос добычи топлива. Само по себе антивещество уже давно перестало быть фантастикой — учёным впервые удалось синтезировать антиводород ещё в 1995 году. Но добыть его в достаточных количествах невозможно. В настоящее время антиматерию можно получить лишь с помощью ускорителей частиц. При этом количество создаваемого ими вещества измеряется мизерными долями граммов, а его стоимость составляет астрономические суммы. На одну миллиардную грамма антивещества учёным из Европейского центра ядерных исследований (того самого, где создали Большой адронный коллайдер) пришлось потратить несколько сотен миллионов швейцарских франков. С другой стороны, стоимость производства будет постепенно уменьшаться и в будущем может достичь куда более приемлемых значений.

Кроме того, придётся придумать способ, позволяющий хранить антивещество — ведь при соприкосновении с обычной материей оно мгновенно аннигилируется. Одно из решений — охлаждать антивещество до сверхнизких температур и использовать магнитные ловушки, не позволяющие ему соприкасаться со стенками бака. На данный момент рекордное время хранения антивещества составляет 1000 секунд. Не годы, конечно, но с учётом того, что в первый раз антивещество удалось удержать лишь на 172 миллисекунды, прогресс есть.

Ускорители частиц могут стать источником антивещества для звездолётов, а также множества слухов о грядущем конце света. (Alpinethread / Flickr. CC BY-SA 2.0)

И даже быстрее

Многочисленные фантастические фильмы приучили нас к тому, что добраться до других звёздных систем можно куда быстрее, чем за несколько лет. Достаточно включить варп-двигатель или гиперпространственный привод, откинуться поудобнее в кресле — и уже через несколько минут оказаться на другом краю галактики. Теория относительности запрещает путешествия со скоростями, превышающими скорости света, но в то же время оставляет лазейки, позволяющие обойти эти ограничения. Если бы могли разорвать или растянуть пространство-время, то смогли бы путешествовать быстрее света, не нарушая никаких законов.

Разрыв пространства более известен как кротовая нора, или червоточина. Физически она представляет собой тоннель, связывающий две удалённые области пространства-времени. Почему бы не использовать такой тоннель для путешествия в дальний космос? Дело в том, что создание подобной кротовый норы требует наличия в разных точках вселенной двух сингулярностей (это то, что находится за горизонтом событий чёрных дыр, — фактически гравитация в чистом виде), которые смогут разорвать пространство-время, создав тоннель, позволяющий путешественникам «срезать» путь через гиперпространство.

Кроме того, для поддержания подобного тоннеля в устойчивом состоянии необходимо, чтобы он был заполнен экзотической материей с отрицательной энергией, — а существование подобной материи до сих пор не доказано. В любом случае, создать кротовую нору по силам лишь сверхцивилизации, которая на много тысяч лет будет опережать нынешнюю в развитии и чьи технологии с нашей точки зрения будут похожи на волшебство.

Такой могла бы быть кротовая нора на Земле (CorvinZahn / Wikimedia).

Второй, более доступный вариант — «растягивание» пространства. В 1994 году мексиканский физик-теоретик Мигель Алькубьерре предположил, что можно изменить его геометрию, создав волну, сжимающую пространство впереди корабля и расширяющую его сзади. Таким образом звездолёт окажется в «пузыре» искривлённого пространства, которое само будет двигаться быстрее света, благодаря чему корабль не нарушит фундаментальных физических принципов. По словам самого Алькубьерре, идея пришла ему в голову после просмотра одного из эпизодов «Звёздного пути».

Правда, сам учёный счёл, что реализовать подобную технологию на практике будет невозможно, так как для этого потребуется колоссальное количестве массы-энергии. Первые вычисления давали значения, превышающие массу всей существующей Вселенной, последующие уточнения уменьшили её до «всего лишь» юпитерианской.

Мигель Алькубьерре, как и многие учёные, вдохновлялся классикой научной фантастики (Movistar Campus Party México / Flickr)

Но в 2011 году Гарольд Уайт, возглавляющий исследовательскую группу Eagleworks при NASA, провёл расчёты, которые показали, что если изменить некоторые параметры, то для создания пузыря Алькубьерре может потребоваться куда меньше энергии, чем считалось ранее, и перерабатывать целую планету уже не потребуется. Сейчас группа Уайта прорабатывает возможность «пузыря Алькубьерре» на практике.

Если у экспериментов будут результаты, то это станет первым маленьким шажком к тому, чтобы создать двигатель, позволяющий путешествовать в 10 раз быстрее скорости света. Разумеется, космический аппарат, использующий пузырь Алькубьерре, отправится в путешествие через много десятков, а то и сотен лет. Но сама перспектива того, что такое действительно возможно, уже захватывает дух.

Полёт «Валькирии»

Практически все предлагаемые проекты звездолётов имеют один существенный недостаток: они весят десятки тысяч тонн, и их создание требует огромного количество запусков и сборочных операций на орбите, что увеличивает стоимость постройки на порядок. Но если человечество всё же научится получать большое количество антиматерии, у него появится альтернатива этим громоздким конструкциям.

В 1990-х годах писатель Чарльз Пелегрино и физик Джим Пауэлл предложили проект звездолёта, известный как «Валькирия». Его можно описать как нечто вроде космического тягача. Корабль представляет собой связку из двух аннигиляционных двигателей, соединённых между собой сверхпрочным тросом длиной 20 километров. В центре связки находятся несколько отсеков для экипажа. Корабль использует первый двигатель, чтобы набрать скорость, близкую к световой, а второй — чтобы погасить её при выходе на орбиту вокруг звезды. Благодаря использованию троса вместо жёсткой конструкции масса корабля составляет всего 2100 тонн (для сравнения, масса МКС — 400 тонн), из которых 2000 тонн приходятся на двигатели. Теоретически такой корабль может разогнаться до скорости в 92% от скорости света.

Модифицированный вариант данного корабля, названный Venture Star, показан в фильме «Аватар» (2011), одним из научных консультантов которого был как раз Чарльз Пелегрино. Venture Star отправляется в путешествие, разгоняясь при помощи лазеров и 16-километрового солнечного паруса, после чего тормозит у Альфы Центавра с помощью двигателя на антиматерии. На обратном пути последовательность меняется. Корабль способен разогнаться до 70% скорость света и долететь до Альфа Центавра менее чем за 7 лет.

Venture Star в фильме «Аватар». Что интересно, почти такое же название (только без пробела) носил проект многоразового космического корабля, предложенный Lockheed Martin в начале 1990-х.

Без топлива

Как существующие, так и перспективные ракетные двигатели имеют одну проблему — топливо всегда составляет большую часть их массы на старте. Однако есть проекты звездолётов, которым вообще не нужно будет брать с собой топливо.

В 1960 году физик Роберт Бассард предложил концепцию двигателя, который использовал бы находящийся в межзвёздном пространстве водород в качестве горючего для термоядерного двигателя. К сожалению, несмотря на всю привлекательность идеи (водород — самый распространённый элемент во Вселенной), у неё есть ряд теоретических проблем, начиная от способа сбора водорода и заканчивая расчётной максимальной скоростью, которая вряд ли превысит 12% световой. А значит, до системы Альфа Центавра придётся лететь минимум полвека.

По принципу работы двигатель Бассарда схож с реактивными двигателями, только вместо воздуха он использует водород.

Другая интересная концепция — применение солнечного паруса. Если построить на земной орбите или на Луне огромный сверхмощный лазер, то его энергию можно было бы использовать, чтобы разогнать оснащённый гигантским солнечным парусом звездолёт до достаточно больших скоростей. Правда, по расчётам инженеров, чтобы придать пилотируемому кораблю массой 78 500 тонн скорость в половину световой, потребуется солнечный парус диаметром в 1000 километров.

Ещё одна очевидная проблема звездолёта с солнечным парусом заключается в том, что его нужно как-то затормозить. Одно из её решений — при подлёте к цели выпустить позади звездолёта второй, меньший по размерам парус. Основной же отсоединится от корабля и продолжит самостоятельное путешествие.

Двадцатиметровый солнечный парус, разработанный NASA.

***

Межзвёздное путешествие — очень сложное и дорогостоящее предприятие. Создать корабль, способный за относительно небольшой срок покрыть космическое расстояние, — одна из самых грандиозных задач, стоящих перед человечеством в будущем. Конечно, это потребует усилий нескольких государств, если не всей планеты. Сейчас это кажется утопией — у правительств слишком много забот и слишком много способов потратить деньги. Полёт на Марс в миллионы раз проще полёта к Альфе Центавра — и тем не менее вряд ли сейчас кто-то рискнёт назвать год, когда он всё же состоится.

Оживить работы в этом направлении может или глобальная опасность, грозящая всей планете, или же создание единой планетарной цивилизации, которая сможет преодолеть внутренние склоки и захочет покинуть свою колыбель. Время для этого ещё не пришло — но это не значит, что оно не придёт никогда.

Если вы нашли опечатку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Статьи

Наука

Ядерное оружие в космосе. История гонки вооружений за пределами Земли

Наука

Теория панспермии: а что если жизнь на Земле появилась из космоса?
Мы — дети галактики?

Наука

Настоящее свидание с Рамой: как наука открыла межзвёздные тела
Гости из далёкого космоса

Наука

Настоящие вампиры: как наука объясняет миф о Детях Ночи
И кто в природе действительно пьёт кровь

Наука

Космические тяжеловесы: прошлое и будущее самых мощных ракет-носителей
Сверхтяжёлая надежда космонавтики

Наука

Теория палеоконтакта: а что если инопланетяне уже посещали Землю?
И что об этом думали фантасты

Наука

Секреты водного мира. Что будет искать миссия Europa Clipper
На Европе есть океан. Возможно ли, что там есть жизнь?

Наука

Терраформирование планет: возможны ли яблони на Марсе, города на Венере и лунные колонии
Как обустроить дом в сотнях световых лет от дома

Наука

Трикстер и компания. Мифология коренных американцев
Тринадцать небесных и девять подземных миров на другой стороне света

Наука

Откуда живые существа берут энергию: живучие бактерии, драгоценный кислород и много углеводов
И можно ли дышать азотом, серой и железом
Показать ещё